

Z86C47 ROM

CMOS Z8® 8-BIT MICROCONTROLLER

GENERAL DESCRIPTION

The Z86C47 Digital Television Controller (DTC) introduces a new level of sophistication to single-chip architecture. The Z86C47 is a member of the Z8® single-chip microcontroller family with 16 Kbytes of ROM and 236 bytes of RAM. The device is housed in a 64-pin DIP package, and is CMOS compatible. The part features ROMs for program storage and character generation. The Z86C47 microcontroller may be used in prototyping, low volume applications or where code development is required. Zilog's DTC offers fast execution, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption. The device provides an ideal performance and reliability solution for consumer and industrial television applications.

The Z86C47 architecture utilizes Zilog's advanced Superintegration™ design methodology. The device has an 8-bit internal data path controlled by a Z8 microcontroller, On-Screen Display (OSD) logic circuits/Pulse Width Modulators (PWM). On-chip peripherals include five register/memory mapped I/O ports (Ports 2, 3, 4, 5, and 6), Interrupt control logic (1 software, 2 external and 3 internal interrupts) and a standby mode recovery input port (Port 3, pin P30).

The OSD control circuits support eight rows by 20 columns for 128 kinds of characters. The character color is specified by row. One of the eight rows is assigned to show two kinds of colors for bar type displays such as volume control. The OSD is capable of displaying high resolution $(11 \times 15 \text{ dot pattern})$ characters.

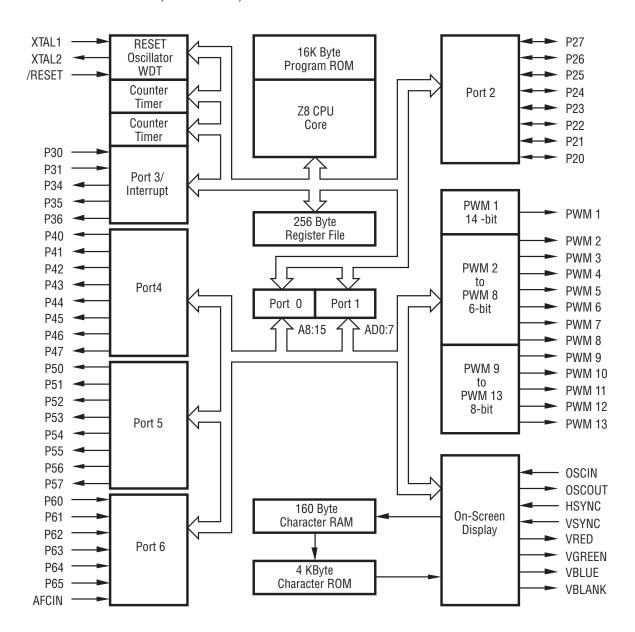
A 14-bit PWM port provides enough voltage resolution for a voltage synthesizer tuning system. Seven 6-bit PWM ports are used for controlling audio signal level. Five 8-bit PWM ports are used to vary picture levels. DTC applications demand powerful I/O capabilities. The Z86C47 fulfills this with 35 I/O pins dedicated to input and output. These lines are grouped into five ports, and are configurable under software control to provide timing, status signals, parallel I/O and an address/data bus for interfacing to external memory.

There are three basic address spaces available to support this wide range of configurations: Program Memory, Register File and Data Memory. The Data Memory address space contains a number of control registers for the PWMs, OSD, and I/O Ports 4, 5, and 6. Specifically, there are 13 PWM and eight OSD control registers mapped into the external memory address space. Three I/O registers for Ports 4, 5, and 6 reside in data memory space as well. The Register File is composed of 236 bytes of general purpose register, two I/O Port registers and 15 control and status registers.

To unburden the program from coping with the real-time problems such as counting/timing and data communication, the DTC's offer two on-chip counter/timers with a large number of user selectable modes (see block diagram).

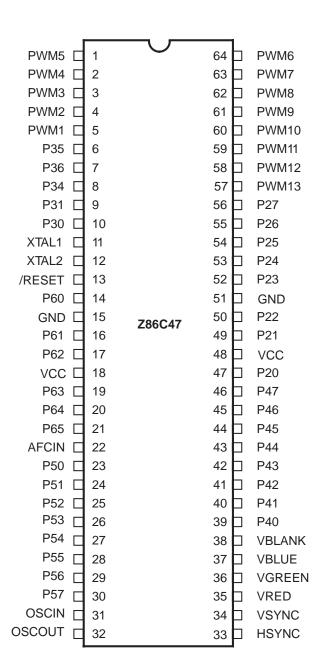
Notes:

All Signals with a preceding front slash, "/", are active Low, e.g., B//W (WORD is active Low); /B/W (BYTE is active Low, only).


Power connections follow conventional descriptions below:

Connection	Circuit	Device		
Power Ground	V _{cc} GND	${f V}_{ m DD} {f V}_{ m SS}$		

DC-5462-00 (7-14-93)


GENERAL DESCRIPTION (Continued)

Functional Block Diagram

PIN CONFIGURATION

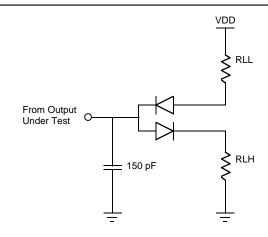
Z86C47 Mask-ROM Plastic DIP

ABSOLUTE MAXIMUM RATINGS

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sec-

tions of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameters	Min	Max	Units	Notes	
V _{CC}	Power Supply Voltage †	-0.3	+7	V		
V,	Input Voltage	-0.3	$V_{CC} + 0.3$	V		
V,	Input Voltage	-0.3	$V_{CC}^{CC} + 0.3$	V	[1]	
$V_{\circ}^{'}$	Output Voltage	-0.3	$V_{CC}^{CC} + 8.0$	V	[2]	
I _{OH}	Output Current High		- 10	mA	1 pin	
I _{OH}	Output Current High		-100	mA	all total	
OL	Output Current Low		20	mA	1 pin	
OL	Output Current Low		40	mA	[3] (1 pin)	
I _{OL}	Output Current Low,all total		200	mA		
T,	Operating Temperature	††				
T _{STG}	Storage Temperature	-65	+150	С		


Notes:

- [1] Port 2 open-drain
- [2] PWM open-drain outputs
- [3] Port 5

- † Voltage on all pins with respect to GND.
- †† See Ordering Information

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (see Test Load Diagram).

Test Load Diagram

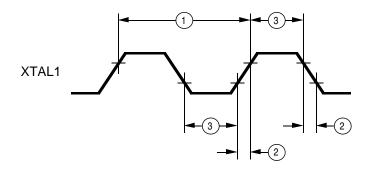
CAPACITANCE

 $T_A=25$ °C, $V_{CC}=GND=0$ V, Freq=1.0 MHz, unmeasured pins to GND.

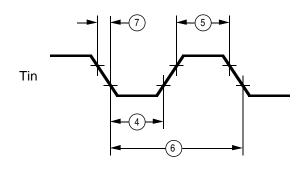
Parameter	Max	Units
Input capacitance Output capacitance I/O capacitance AFC _{IN} input capacitance	10 20 25 10	pF pF pF pF

DC CHARACTERISTICS $T_A = 0^{\circ}C$ to $+70^{\circ}C$; $V_{CC} = +4.5$ V to +5.5 V; $F_{OSC} = 4$ MHz

Symbol	Parameter	T _A =0°C Min	to +70°C Max	Typical @ 25°C	Units	Conditions
V _{IL}	Input Voltage Low	0	0.2 V _{cc}	1.48	V	
V _{II C}	Input XTAL/Osc In Low		0.07 V _{CC}	0.98	V	External Clock Generator Driven
VIH	Input Voltage High	$0.7 V_{cc}$	V_{CC}	3.0	V	
V_{IHC}	Input XTAL/Osc in High	$0.8 V_{cc}$	V_{CC}	3.2	V	External Clock Generator Driven
V _{HY}	Schmitt Hysteresis	0.1 V _{cc}		0.8	V	
V _{PU}	Maximum Pull-up Voltage		12		V	[2]
V _{OL}	Output Voltage Low		0.4	0.16	V	$I_{OI} = 1.00 \text{ mA}$
02			0.4	0.19	V	I _{OL} =3.2 mA, [1]
			0.4	0.19	V	I _{OI} =0.75 mA [2]
			1.5	1.00	V	I _{OI} =10 mA [1]
V_{00-01}	AFC Level 01 In		$0.45 V_{cc}$	1.9	V	
V ₀₁₋₁₁	AFC Level 11 In	$0.5 V_{\rm cc}$	0.75 V _{CC}	3.12	V	
V _{OH}	Output Voltage High	V _{cc} -0.4		4.75	V	I _{OH} = -0.75 mA
I _{IR}	Reset Input Current		-80	-46	μΑ	$V_{\rm pl} = 0 \text{ V}$
I _{IL}	Input Leakage	-3.0	3.0	0.01	μΑ	0 V,V _{CC}
I _{OL}	Tri-State Leakage	-3.0	3.0	0.02	μΑ	0 V,V _{CC}
I _{cc}	Supply Current		20	13.2	mA	All inputs at rail
I _{CC1}			6	3.2	mΑ	All inputs at rail
I _{CC2}			10	0.1	μΑ	All inputs at rail

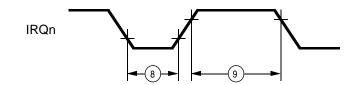

Notes:

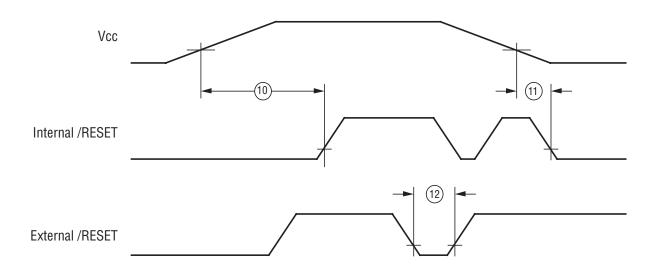
[1] Port 5

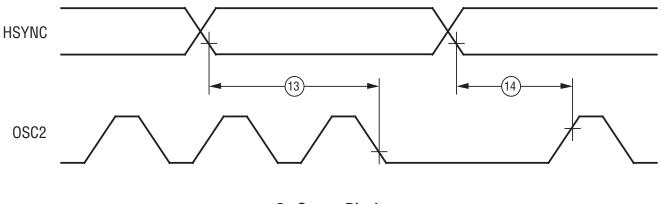

[2] PWM Open-Drain

AC CHARACTERISTICS

Timing Diagrams


External Clock


Counter Timer


AC CHARACTERISTICS
Timing diagrams (Continued)

Interrupt Request

Power On Reset

On Screen Display

AC CHARACTERISTICS T_A=0° C to +70° C; V_{cc} =+4.5 V to +5.5 V; F_{osc} =4 MHz,

No	Symbol	Parameter	Min	Max	Unit
1	ТрС	Input clock period	250	1000	ns
2	TrC,TfC	Clock input raise and fall		15	ns
3	TwC	Input clock width	125		ns
4	TwTinL	Timer input low width	70		ns
5	TwTinH	Timer input high width	3 TpC		
6	TpTin	Timer input period	8 TpC		
7	TrTin,TfTin	Timer input raise and fall		100	ns
8A	TwIL	Int req input low	70		ns
8B	TwlL		3 TpC		
9	TwIH	Int request input high	3 TpC		
10	TdPOR	Power On Reset delay	25	100	ms
11	TdLVIRES	Low voltage detect to	200		ns
		Internal RESET condition			
12	TwRES	Reset minimum width	5 TpC		
13	TdHsOI	Hsync start to Vosc stop	2 TpV	3 TpV	
14	TdHsOh	Hsync end to Vosc start		1 TpV	
15	TdWDT	WDT Refresh Time		12	ms

[1] Refer to DC Characteristics for details on switching levels.

^{*} Units in nanoseconds

© 1993 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 Telex 910-338-7621 FAX 408 370-8056